Google Scholar:
https://scholar.google.com/citations?user=zzXmka0AAAAJ&hl=en
45. Shan Heng, Hongguang Liu, Chengyuan Wang, Chun Tang, Ying Luo and Xuesen Wang, Electrical percolation and dynamic piezoresistivity of silver nanoparticle/polydimethylsiloxane films, Mater. Res. Exp. (2020), accepted.
44. Shiping Jiang, Huiling Wu, Liangzhi Kou, Chun Tang*, Chengyuan Wang* and Changfeng Chen*, Buckling of blue phosphorus nanotubes under axial compression: Insights from molecular dynamics simulations, J. Appl. Phys. (2020), Featured Article.
43. Junfeng Cui, Zhenyu Zhang*, Dongdong Liu, Danli Zhang, Wei Hu, Li Zou, Yao Lu, Chi Zhang, Huanhuan Lu, Chun Tang*, Nan Jiang*, Ivan Parkin, Dongming Guo, Unprecedented piezoresistance coefficient in strained silicon carbide, Nano Lett. 19, 6569 (2019)
42. Ziyu Zhao, Jinxing Liu*, A.K. Soh, and Chun Tang, Temperature-mediated fabrication, stress-induced crystallization and transformation: atomistic simulations of additively manufactured amorphous Cu pillars, Modelling Simul. Mater. Sci. Eng., 27, 075012 (2019).
41. Te Zhang, Guotong Wang, Chengyuan Wang*, Chun Tang*, Faling Zhang, and Ying Luo, Effect of AuNP-AuNP vdW interaction on the mechanics and piezoresistivity of AuNP-polymer nanocomposite, AIP Adv. 9, 055212 (2019).
40. Faling Zhang, Guotong Wang, Chengyuan Wang*, Chun Tang*, Tiger Sun and Xiaozhu Yu, Geometries of Au nanoparticle-chains control their percolation in plolymer, Appl. Phys. Lett. 113, 253105 (2018).
39. R J Wang, C Y Wang*, Y T Feng and Chun Tang, Mechanisms underlying the shape effect on nano-piezoelectricity, Nano Energy, 53, 906 (2018).
38. Guotong Wang, Chengyuan Wang*, Chun Tang*, Faling Zhang, Tiger Sun and Xiaozhu Yu, Two Stage Electrical Percolation of Metal Nanoparticle-Polymer Nanocomposites, J. Phys. Chem. C, 122, 8614 (2018).
37. Yongcheng Liang*, Ping Qin, Lizhen Zhang, Jing Zhang, and Chun Tang*, Designing Superhard Metals: the Case of Low Borides, AIP Adv. 8, 045305 (2018).
36. Zhenyu Zhang*, Junfeng Cui, Bo Wang, Haiyue Jiang, Guoxin Chen, Jinhong Yu, Chengte Lin, Chun Tang, Alexander Hartmaier, Junjie Zhang, Jun Luo, Andreas Rosenkranz, Nan Jiang* and Dongming Guo, In situ TEM observation of rebonding on fractured silicon carbide, Nanoscale, 10, 6261-6269 (2018), Cover Article.
35. R J Wang, C Y Wang*, Y T Feng and Chun Tang, Mechanical Responses of a-axis GaN nanowires Under Axial Loads, Nanotechnology, 29, 095707 (2018).
34. Yongcheng Liang*, Zhenbang Gao, Ping Qin, Li Gao and Chun Tang*, The mechanism of anomalous hardening in transition-metal monoborides, Nanoscale, 9, 9112 (2017).
Before Joining Jiangsu University:
33. Liangzhi Kou*, Yandong Ma, Chun Tang, Ziqi Sun, Aijun Du and Changfeng Chen, Auxetic and Ferroelastic Borophane: A Novel 2D Material with Negative Possion’s Ratio and Switchable Dirac Transport Channels, Nano Lett. 14, 7910-7914 (2016).
32. M. S. Lodge, Chun Tang, B. T. Blue, W. A. Hubbard, A. Martini, B. D. Dawson and M. Ishigami, Lubricity of gold nanocrystals on graphene measured using quartz crystal microbalance, Sci. Rep. 6, 31837 (2016).
31. Dustin Olson, Hongyu Gao, Chun Tang, Wilfred T. Tysoe, and Ashlie Martini*, Presure dependence of the interfacial structure of potassium chloride films on iron, Thin Solid Films, 593, 150 (2015).
30. Chun Tang, and Lilian P. Davila*, Strain-induced structural modifications and size-effects in silica nanowires, J. Appl. Phys. 118, 094302 (2015).
29. Chun Tang, Hidetaka Ishihara, Jaskiranjeet Sodhi, Yen-Chang Chen, Andrew Siordia, Ashlie Martini*, and Vincent C Tung*, Flexible all-carbon photovoltaics with improved thermal stability, J. Solid State Chem. 224, 94 (2015).
28. Chun Tang, and Lilian P. Davila*, Anomalous surface states modify the size-dependent mechanical properties and fracture of silica nanowires. Nanotechnology 25, 435702 (2014).
27. William Wolfs, Chun Tang*, and Changfeng Chen*, Buckling of double- walled carbon nanotubes under compression and bending: Influence of vacancy defects and effect of high-temperature annealing. J. Appl. Phys. 114, 174308 (2013).
26. Christine M. Isborn, Chun Tang, Ashlie Martini, Erin Johnson, Alberto Otero de la Rosa, and Vincent C. Tung, Carbon Nanotube Chirality Determines Efficiency of Electron Transfer to Fullerene in All-Carbon Photovoltaics, J. Phys. Chem. Lett. 4, 2914 (2013).
25. Chun Tang, Tomas Oppenheim, Vincent C. Tung and Ashlie Martini*, Structure-Stability Relationships for Graphene-Wrapped Fullerene-Coated Carbon Nanotubes, Carbon, 61, 458 (2013).
24. Liangzhi Kou*, Chun Tang, Thomas Frauenheim, and Changfeng Chen, Intrinsic Charge Separation and Tunable Electronic Bandgap of Armchair Graphene Nanoribbons Encapsulated in a Double-Walled Carbon Nanotube, J. Phys. Chem. Lett. 4, 1328 (2013).
23. Liangzhi Kou*, Chun Tang, Tim Wehling, Thomas Frauenheim, and Changfeng Chen, Emergent Properties and Trends of a New Class of Carbon Nanocomposites: Graphene Nanoribbons Encapsulated in a Carbon Nanotube, Nanosale 5, 3306-3314 (2013).
22. Zhijiang Ye, Chun Tang, Yalin Dong, and Ashlie Martini*, Role of Wrinkle Height in Friction Variation with Number of Graphene Layers, J. Appl. Phys. 112, 116102 (2012).
21. Liangzhi Kou*, Chun Tang, Yi Zhang, Thomas Heine, Changfeng Chen, and Thomas Frauenheim, Tuning Magnetism and Electronic Phase Transitions by Strain and Electric Field in Zigzag MoS2 Nanoribbons. J. Phys. Chem. Lett. 3, 2934 (2012).
20. David Santo Pietro, Chun Tang*, and Changfeng Chen*, Enhancing Interwall Load Transfer by Vacancy Defects in Carbon Nanotubes. Appl. Phys. Lett. 100, 033118 (2012).
19. Chun Tang*, Liangzhi Kou and Changfeng Chen, Tunable Magnetism and Band Gap Engineering in Zigzag C2x-BNy Sheets and Ribbons. Chem. Phys. Lett. 523, 98-103 (2012).
18. Liangzhi Kou, Chun Tang, Changfeng Chen* and Wanlin Guo*, Hybrid W-shaped Graphene Nanoribbons: Distinct Electronic and Transport Properties, J. Appl. Phys. 110, 124312 (2011).
17. Jeremy Feliciano, Chun Tang*, Yingyan Zhang and Changfeng Chen*, Aspect Ratio Dependant Buckling Mode Transition in Single-Walled Carbon Nanotubes under Compression. J. Appl. Phys. 109, 084323 (2011).
16. Liangzhi Kou┴, Chun Tang┴, Wanlin Guo and Changfeng Chen, Tunable Magnetism in Strained Graphene with Topological Line Defect, ACS Nano 5, 1012 (2011).
15. Chun Tang, Wanlin Guo* and Changfeng Chen*, Structural and mechanical properties of partially unzipped carbon nanotubes, Phys. Rev. B 83, 075410 (2011).
14. Chun Tang, Yi Zhang, Wanlin Guo and Changfeng Chen, Thermally Activated Interlayer Bonding in Multiwalled Carbon Nanotubes, J. Phys. Chem. C, 114, 18091 (2010).
13. Chun Tang, Wanlin Guo and Changfeng Chen, Bending Manipulation Induced sp2-sp3 Bond Transition in Carbon Nanotubes, J. Appl. Phys. 108, 026108 (2010).
12. Chun Tang, Wanlin Guo and Changfeng Chen, Tang et al. Reply: Phys. Rev. Lett. 103, 039602 (2009).
11. Chun Tang, Wanlin Guo and Changfeng Chen, Molecular dynamics simulation of tensile elongation of carbon nanotubes: Temperature and size effects, Phys. Rev. B 79, 155436 (2009).
10. Yitao Dai, Wanlin Guo, Zhuhua Zhang, Bin Zhou and Chun Tang, Electric-field-induced deformation in boron nitride nanotubes, J. Phys. D: Appl. Phys. 42, 085403 (2009).
9. Yitao Dai, Chun Tang and Wanlin Guo, Simulation Studies of a “Nanogun” Based on Carbon Nanotubes, Nano Res., 1, 176-183 (2008).
8. Yitao Dai, Wanlin Guo, Chun Li and Chun Tang, Ultrahigh Frequency Longitudinal Oscillators from Single-Walled Carbon Nanotubes, J. Comput. Theor. Nanosci. 5, 1372-1376 (2008).
7. Chun Tang, Wanlin Guo and Changfeng Chen, Mechanism for Superelongation of Carbon Nanotubes at High Temperatures, Phys. Rev. Lett. 100, 175501 (2008).
6. Bin Zhou, Wanlin Guo and Chun Tang, Chemisorption of hydrogen molecules on carbon nanotubes: charging effect from first-principles calculations, Nanotechnology, 19, 075077 (2008).
5. Xiaojie Duan, Chun Tang, Jin Zhang, Wanlin Guo and Zhongfan Liu, Two Distinct Buckling Modes in Carbon Nanotube Bending, Nano Lett. 7, 143-148 (2007).
4. Wanlin Guo, Chun Tang and Yufeng Guo, Nanointelligent materials and systems, Int. J. Nanoscience. 6, 671-676 (2006).
3. Chun Tang, Wanlin Guo and Yufeng Guo, Electrostrictive effect on electronic structures of carbon nanotubes, Appl. Phys. Lett. 88, 243112 (2006).
2. Wanlin Guo and Chun Tang, Molecular Physical Mechanics and Multi-Physics Scale Studies. Int. J. Mult. Comp. Eng. 4, 115-126 (2006).
1. Chun Tang, Wanlin Guo and Yufeng Guo, Carbon nanotubes---A new kind of giant electrostrictive intelligent nano-material, Physics 33, 396-399 (2004) (in Chinese).
44. Shiping Jiang, Huiling Wu, Liangzhi Kou, Chun Tang*, Chengyuan Wang* and Changfeng Chen*, Buckling of blue phosphorus nanotubes under axial compression: Insights from molecular dynamics simulations, J. Appl. Phys. (2020), Featured Article.
43. Junfeng Cui, Zhenyu Zhang*, Dongdong Liu, Danli Zhang, Wei Hu, Li Zou, Yao Lu, Chi Zhang, Huanhuan Lu, Chun Tang*, Nan Jiang*, Ivan Parkin, Dongming Guo, Unprecedented piezoresistance coefficient in strained silicon carbide, Nano Lett. 19, 6569 (2019)
42. Ziyu Zhao, Jinxing Liu*, A.K. Soh, and Chun Tang, Temperature-mediated fabrication, stress-induced crystallization and transformation: atomistic simulations of additively manufactured amorphous Cu pillars, Modelling Simul. Mater. Sci. Eng., 27, 075012 (2019).
41. Te Zhang, Guotong Wang, Chengyuan Wang*, Chun Tang*, Faling Zhang, and Ying Luo, Effect of AuNP-AuNP vdW interaction on the mechanics and piezoresistivity of AuNP-polymer nanocomposite, AIP Adv. 9, 055212 (2019).
40. Faling Zhang, Guotong Wang, Chengyuan Wang*, Chun Tang*, Tiger Sun and Xiaozhu Yu, Geometries of Au nanoparticle-chains control their percolation in plolymer, Appl. Phys. Lett. 113, 253105 (2018).
39. R J Wang, C Y Wang*, Y T Feng and Chun Tang, Mechanisms underlying the shape effect on nano-piezoelectricity, Nano Energy, 53, 906 (2018).
38. Guotong Wang, Chengyuan Wang*, Chun Tang*, Faling Zhang, Tiger Sun and Xiaozhu Yu, Two Stage Electrical Percolation of Metal Nanoparticle-Polymer Nanocomposites, J. Phys. Chem. C, 122, 8614 (2018).
37. Yongcheng Liang*, Ping Qin, Lizhen Zhang, Jing Zhang, and Chun Tang*, Designing Superhard Metals: the Case of Low Borides, AIP Adv. 8, 045305 (2018).
36. Zhenyu Zhang*, Junfeng Cui, Bo Wang, Haiyue Jiang, Guoxin Chen, Jinhong Yu, Chengte Lin, Chun Tang, Alexander Hartmaier, Junjie Zhang, Jun Luo, Andreas Rosenkranz, Nan Jiang* and Dongming Guo, In situ TEM observation of rebonding on fractured silicon carbide, Nanoscale, 10, 6261-6269 (2018), Cover Article.
35. R J Wang, C Y Wang*, Y T Feng and Chun Tang, Mechanical Responses of a-axis GaN nanowires Under Axial Loads, Nanotechnology, 29, 095707 (2018).
34. Yongcheng Liang*, Zhenbang Gao, Ping Qin, Li Gao and Chun Tang*, The mechanism of anomalous hardening in transition-metal monoborides, Nanoscale, 9, 9112 (2017).
Before Joining Jiangsu University:
33. Liangzhi Kou*, Yandong Ma, Chun Tang, Ziqi Sun, Aijun Du and Changfeng Chen, Auxetic and Ferroelastic Borophane: A Novel 2D Material with Negative Possion’s Ratio and Switchable Dirac Transport Channels, Nano Lett. 14, 7910-7914 (2016).
32. M. S. Lodge, Chun Tang, B. T. Blue, W. A. Hubbard, A. Martini, B. D. Dawson and M. Ishigami, Lubricity of gold nanocrystals on graphene measured using quartz crystal microbalance, Sci. Rep. 6, 31837 (2016).
31. Dustin Olson, Hongyu Gao, Chun Tang, Wilfred T. Tysoe, and Ashlie Martini*, Presure dependence of the interfacial structure of potassium chloride films on iron, Thin Solid Films, 593, 150 (2015).
30. Chun Tang, and Lilian P. Davila*, Strain-induced structural modifications and size-effects in silica nanowires, J. Appl. Phys. 118, 094302 (2015).
29. Chun Tang, Hidetaka Ishihara, Jaskiranjeet Sodhi, Yen-Chang Chen, Andrew Siordia, Ashlie Martini*, and Vincent C Tung*, Flexible all-carbon photovoltaics with improved thermal stability, J. Solid State Chem. 224, 94 (2015).
28. Chun Tang, and Lilian P. Davila*, Anomalous surface states modify the size-dependent mechanical properties and fracture of silica nanowires. Nanotechnology 25, 435702 (2014).
27. William Wolfs, Chun Tang*, and Changfeng Chen*, Buckling of double- walled carbon nanotubes under compression and bending: Influence of vacancy defects and effect of high-temperature annealing. J. Appl. Phys. 114, 174308 (2013).
26. Christine M. Isborn, Chun Tang, Ashlie Martini, Erin Johnson, Alberto Otero de la Rosa, and Vincent C. Tung, Carbon Nanotube Chirality Determines Efficiency of Electron Transfer to Fullerene in All-Carbon Photovoltaics, J. Phys. Chem. Lett. 4, 2914 (2013).
25. Chun Tang, Tomas Oppenheim, Vincent C. Tung and Ashlie Martini*, Structure-Stability Relationships for Graphene-Wrapped Fullerene-Coated Carbon Nanotubes, Carbon, 61, 458 (2013).
24. Liangzhi Kou*, Chun Tang, Thomas Frauenheim, and Changfeng Chen, Intrinsic Charge Separation and Tunable Electronic Bandgap of Armchair Graphene Nanoribbons Encapsulated in a Double-Walled Carbon Nanotube, J. Phys. Chem. Lett. 4, 1328 (2013).
23. Liangzhi Kou*, Chun Tang, Tim Wehling, Thomas Frauenheim, and Changfeng Chen, Emergent Properties and Trends of a New Class of Carbon Nanocomposites: Graphene Nanoribbons Encapsulated in a Carbon Nanotube, Nanosale 5, 3306-3314 (2013).
22. Zhijiang Ye, Chun Tang, Yalin Dong, and Ashlie Martini*, Role of Wrinkle Height in Friction Variation with Number of Graphene Layers, J. Appl. Phys. 112, 116102 (2012).
21. Liangzhi Kou*, Chun Tang, Yi Zhang, Thomas Heine, Changfeng Chen, and Thomas Frauenheim, Tuning Magnetism and Electronic Phase Transitions by Strain and Electric Field in Zigzag MoS2 Nanoribbons. J. Phys. Chem. Lett. 3, 2934 (2012).
20. David Santo Pietro, Chun Tang*, and Changfeng Chen*, Enhancing Interwall Load Transfer by Vacancy Defects in Carbon Nanotubes. Appl. Phys. Lett. 100, 033118 (2012).
19. Chun Tang*, Liangzhi Kou and Changfeng Chen, Tunable Magnetism and Band Gap Engineering in Zigzag C2x-BNy Sheets and Ribbons. Chem. Phys. Lett. 523, 98-103 (2012).
18. Liangzhi Kou, Chun Tang, Changfeng Chen* and Wanlin Guo*, Hybrid W-shaped Graphene Nanoribbons: Distinct Electronic and Transport Properties, J. Appl. Phys. 110, 124312 (2011).
17. Jeremy Feliciano, Chun Tang*, Yingyan Zhang and Changfeng Chen*, Aspect Ratio Dependant Buckling Mode Transition in Single-Walled Carbon Nanotubes under Compression. J. Appl. Phys. 109, 084323 (2011).
16. Liangzhi Kou┴, Chun Tang┴, Wanlin Guo and Changfeng Chen, Tunable Magnetism in Strained Graphene with Topological Line Defect, ACS Nano 5, 1012 (2011).
15. Chun Tang, Wanlin Guo* and Changfeng Chen*, Structural and mechanical properties of partially unzipped carbon nanotubes, Phys. Rev. B 83, 075410 (2011).
14. Chun Tang, Yi Zhang, Wanlin Guo and Changfeng Chen, Thermally Activated Interlayer Bonding in Multiwalled Carbon Nanotubes, J. Phys. Chem. C, 114, 18091 (2010).
13. Chun Tang, Wanlin Guo and Changfeng Chen, Bending Manipulation Induced sp2-sp3 Bond Transition in Carbon Nanotubes, J. Appl. Phys. 108, 026108 (2010).
12. Chun Tang, Wanlin Guo and Changfeng Chen, Tang et al. Reply: Phys. Rev. Lett. 103, 039602 (2009).
11. Chun Tang, Wanlin Guo and Changfeng Chen, Molecular dynamics simulation of tensile elongation of carbon nanotubes: Temperature and size effects, Phys. Rev. B 79, 155436 (2009).
10. Yitao Dai, Wanlin Guo, Zhuhua Zhang, Bin Zhou and Chun Tang, Electric-field-induced deformation in boron nitride nanotubes, J. Phys. D: Appl. Phys. 42, 085403 (2009).
9. Yitao Dai, Chun Tang and Wanlin Guo, Simulation Studies of a “Nanogun” Based on Carbon Nanotubes, Nano Res., 1, 176-183 (2008).
8. Yitao Dai, Wanlin Guo, Chun Li and Chun Tang, Ultrahigh Frequency Longitudinal Oscillators from Single-Walled Carbon Nanotubes, J. Comput. Theor. Nanosci. 5, 1372-1376 (2008).
7. Chun Tang, Wanlin Guo and Changfeng Chen, Mechanism for Superelongation of Carbon Nanotubes at High Temperatures, Phys. Rev. Lett. 100, 175501 (2008).
6. Bin Zhou, Wanlin Guo and Chun Tang, Chemisorption of hydrogen molecules on carbon nanotubes: charging effect from first-principles calculations, Nanotechnology, 19, 075077 (2008).
5. Xiaojie Duan, Chun Tang, Jin Zhang, Wanlin Guo and Zhongfan Liu, Two Distinct Buckling Modes in Carbon Nanotube Bending, Nano Lett. 7, 143-148 (2007).
4. Wanlin Guo, Chun Tang and Yufeng Guo, Nanointelligent materials and systems, Int. J. Nanoscience. 6, 671-676 (2006).
3. Chun Tang, Wanlin Guo and Yufeng Guo, Electrostrictive effect on electronic structures of carbon nanotubes, Appl. Phys. Lett. 88, 243112 (2006).
2. Wanlin Guo and Chun Tang, Molecular Physical Mechanics and Multi-Physics Scale Studies. Int. J. Mult. Comp. Eng. 4, 115-126 (2006).
1. Chun Tang, Wanlin Guo and Yufeng Guo, Carbon nanotubes---A new kind of giant electrostrictive intelligent nano-material, Physics 33, 396-399 (2004) (in Chinese).